Какому классу соединений соответствует функциональная группа сон

Какому классу соединений соответствует функциональная группа сон thumbnail

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 6 мая 2019;
проверки требуют 4 правки.

Бензил ацетат имеет эфирную функциональную группу (показано красным), ацетильную группу (зелёная) и бензильную группу (оранжевая).

гру́ппа атомов — структурный фрагмент органической молекулы (некоторая группа атомов), определяющий её химические свойства. Старшая функциональная группа соединения является критерием его отнесения к тому или иному классу органических соединений[1].

Функциональные группы, входящие в состав различных молекул, обычно ведут себя одинаково в одной и той же химической реакции, хотя их химическая активность может быть различной.

Неоднозначность определения[править | править код]

Некоторые авторы не относят к функциональным группам такие структурные единицы как ароматические системы, сопряжённые связи и прочее. Однако согласно определению, приведенному выше, которое используется большинством авторов химической литературы, такие группы также можно причислять к функциональным группам, так как они в большой мере определяют химические свойства веществ.

В литературе можно встретить похожее понятие радикал или углеводородный радикал (не путать с понятием свободный радикал), чаще всего используемый для обозначения углеводородных заместителей в органической молекуле. Однако многие ученые не акцентируют внимание на различиях понятий углеводородный радикал и функциональная группа и используют оба понятия параллельно. Хотя это и достаточно близкие понятия, путать их не следует.

Особое внимание надо обратить на использование этих терминов в контексте ароматических фрагментов молекул. В таких случаях, если речь идёт о химической реакции с учётом ароматического фрагмента, то его следует называть функциональной группой, а если о фрагменте молекулы, который проявляет некий мезомерный или индуктивный эффект в молекуле, то его следует называть углеводородным радикалом.

Примеры функциональных групп[править | править код]

Известно более 100 функциональных групп.

  1. Функциональные группы, содержащие атом кислорода:
    • гидроксильная –ОН,
    • карбонильная >С=O
    • карбоксильная –COOH
    • алкоксильная –OR (типа –ОСН3) и др.
  2. Функциональные группы, содержащие атом азота:
    • аминогруппа –NH2
    • нитрогруппа –NO2
    • нитрозогруппа –NO
    • нитрильная группа или цианогруппа –CN
    • гидразинная –NHNH2
    • амидная –CONH2 и др.
  3. Функциональные группы, содержащие атом серы:
    • тиольная (сульфгидрильная, меркапто-) –SH
    • сульфидная >S
    • дисульфидная –S–S–
    • сульфоксидная >S=O,
    • сульфонная >SO2 и др.
  4. Функциональные группы, содержащие ненасыщенные углерод-углеродные связи:
    • двойные и тройные связи (в том числе сопряжённые диеновые системы) –С=С–, –С≡С–
    • ароматические фрагменты –С6H5 и др.
  5. Функциональные группы, содержащие прочие атомы:
    • атомы металлов –Li
    • атомы галогенов –Cl, и др.

Молекулы, в состав которых входит больше чем одна функциональная группа называются полифункциональными.

При построении названия органического соединения, согласно номенклатуре ИЮПАК, отталкиваются от наличия в данном соединении функциональных групп.

Таблица функциональных групп[править | править код]

Углеводородные группы[править | править код]

Известно множество других функциональных групп из этой категории, носящих специфические названия, например: изопропил, трет-бутил и т.д.

Галогеновые группы[править | править код]

Функциональные группы, содержащие кислород[править | править код]

Эфирная группа (R1-O-R2) — простые эфиры (ethers) — два углеводородных радикала, соединенные через атом кислорода

Карбонильная группа (R1-C(O)-R2)

Альдегидная группа (H-C(O)-R1)

Карбоксильная группа (R1-С(O)-OH)

Сложноэфирная группа (R1-C(O)-O-R2) — сложные эфиры (esters) — продукты реакции этерификации между карбоновой кислотой и спиртом

Функциональные группы, содержащие азот[править | править код]

Аминогруппа (NH2-R1)

Нитрогруппа (R1-NO2)

Нитрозогруппа (R1-N(O))

Функциональные группы, содержащие серу[править | править код]

Сульфогруппа (R1-SO3H)

Сульфиногруппа (R1-SO2H)

Гидроксисульфанил (R1-SOH)

Функциональные группы, содержащие фосфор[править | править код]

Примечания[править | править код]

  1. ↑ Химическая энциклопедия

Источник

КЛАССИФИКАЦИЯ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

Органические соединения отличаются своей многочисленностью и разнообразием. Поэтому необходима их систематизация. Органические соединения классифицируют, учитывая два основных структурных признака:

— строение углеродной цепи (углеродного скелета);

— наличие и строение функциональных групп.

· Углеродный скелет (углеродная цепь) — последовательность химически связанных между собой атомов углерода.

· Функциональная группа — атом или группа атомов, определяющие принадлежность соединения к определенному классу и ответственные за его химические свойства.

Классификация соединений по строению углеродной цепи

В зависимости от строения углеродной цепи органические соединения делят на ациклические и циклические.

· Ациклические соединения — соединения с открытой (незамкнутой) углеродной цепью. Эти соединения называются также алифатическими.

Читайте также:  Выбитые зубы во сне к чему это

Среди ациклических соединений различают предельные (насыщенные), содержащие в скелете только одинарные связи C-C и непредельные (ненасыщенные), включающие кратные связи C=C и C C.

Классификация соединений по функциональным группам

Соединения, в состав которых входят только углерод и водород, называются углеводородами. Другие, более многочисленные, органические соединения можно рассматривать как производные углеводородов, которые образуются при введении в углеводороды функциональных групп, содержащих другие элементы. В зависимости от природы функциональных групп органические соединения делят на классы. Некоторые наиболее характерные функциональные группы и соответствующие им классы соединений приведены в таблице:

В состав молекул органических соединений могут входить две или более одинаковых или различных функциональных групп.
Например:

HO-CH2-CH2-OH(этиленгликоль);
NH2-CH2-COOH(аминокислота глицин).

Все классы органических соединений взаимосвязаны. Переход от одних классов соединений к другим осуществляется в основном за счет превращения функциональных групп без изменения углеродного скелета. Соединения каждого класса составляют гомологический ряд.

Гомологический ряд — ряд родственных органических соединений с однотипной структурой, каждый последующий член которого отличается от предыдущего на постоянную группу атомов (гомологическую разность).

Для углеводородов и их производных гомологической разностью является метиленовая группа -СН2-. Например, гомологами (членами гомологического ряда) предельных углеводородов (алканов) являются метан СН4, этан С2Н6, пропан С3Н8 и т.д., отличающиеся друг от друга на одну СН2-группу:

Для получения гомологов используют единые методы. Гомологи обладают близкими химическими свойствами и закономерно изменяющимися физическими свойствами.

1.3 Контрольные вопросы

1. К какому типу органических соединений относится хлоропрен (исходное вещество для получения некоторых сортов синтетического каучука):

Ответ 1 : к непредельным алициклическим
Ответ 2 : к непредельным ациклическим
Ответ 3 : к предельным алифатическим
Ответ 4 : к непредельным гетероциклическим

2. Функциональной группой фенолов является . . .
Ответ 1 : группа -NH2
Ответ 2 : группа -COOH
Ответ 3 : группа -OH
Ответ 4 : группа -NO2

3. Какие из приведенных соединений относятся к классу:
а) спиртов; б) карбоновых кислот?

I. C3H7OH; II. CH3CHO; III. CH3COOH; IV. CH3NO2
Ответ 1 : а)III; б)IV
Ответ 2 : а)I; б)II
Ответ 3 : а)II; б)I
Ответ 4 : а)I; б)III

4. Строение адреналина отражает формула

Укажите классы, к которым можно отнести это соединение:

а) альдегиды; г) спирты; ж) простые эфиры;
б) фенолы; д) кетоны; з) сложные эфиры;
в) кислоты; е) амины; и) нитросоединения.

Ответ 1 : а, д, е
Ответ 2 : б, г, е
Ответ 3 : а, б, г, и
Ответ 4 : г, д, ж
Ответ 5 : б, г, з

2.Кислородсодержащие органические соединения

ВВЕДЕНИЕ

Существует огромное число органических соединений, в состав которых наряду с углеродом и водородом входит кислород. Атом кислорода содержится в различных функциональных группах, определяющих принадлежность соединения к конкретному классу.

Соединения каждого класса образуют различные производные. Например, к производным спиртов относятсяпростые эфиры ROR’, к производным карбоновых кислот – сложные эфиры RCOOR’, амиды RCONH2, ангидриды(RCO)2O, хлорангидриды RCOCl и т.д.
Кроме того, большую группу составляют гетерофункциональные соединения, содержащие различные функциональные группы:

· гидроксиальдегиды HO–R–CHO,

· гидроксикетоны HO–R–CO–R’,

· гидроксикислоты HO–R–COOH и т.п.

К важнейшим гетерофункциональным кислородсодержащим соединениям относятся углеводы Cx(H2O)y, молекулы которых включают гидроксильные, карбонильные и производные от них группы.

Чтобы лучше понять строение и свойства этих соединений, необходимо вспомнить электронное строение атома кислорода и дать характеристики его химическим связям с другими атомами.

Спирты

Спирты — соединения алифатического ряда, содержащие одну или несколько гидроксильных групп. Общая формула спиртов с одной гидроксигруппой R–OH.

Классификация спиртов

Спирты классифицируют по различным структурным признакам.

  1. По числу гидроксильных групп спирты подразделяются на
  • одноатомные (одна группа -ОН),
  • многоатомные (две и более групп -ОН).

Современное название многоатомных спиртов — полиолы (диолы, триолы и т.д). Примеры:

  • двухатомный спирт – этиленгликоль (этандиол)

HO–СH2–CH2–OH

  • трехатомный спирт – глицерин (пропантриол-1,2,3)

HO–СH2–СН(ОН)–CH2–OH

Двухатомные спирты с двумя ОН-группами при одном и том же атоме углерода R–CH(OH)2 неустойчивы и, отщепляя воду, сразу же превращаются в альдегиды R–CH=O. Спирты R–C(OH)3 не существуют.

  1. В зависимости от того, с каким атомом углерода (первичным, вторичным или третичным) связана гидроксигруппа, различают спирты
  • первичные R–CH2–OH,
  • вторичные R2CH–OH,
  • третичные R3C–OH.
Читайте также:  К чему во сне плакать в церкви

Например:

В многоатомных спиртах различают первично-, вторично- и третичноспиртовые группы. Например, молекула трехатомного спирта глицерина содержит две первичноспиртовые (HO–СH2–) и одну вторичноспиртовую (–СН(ОН)–) группы.

  1. По строению радикалов, связанных с атомом кислорода, спирты подразделяются на
  • предельные, или алканолы (например, СH3CH2–OH)
  • непредельные, или алкенолы (CH2=CH–CH2–OH)
  • ароматические (C6H5CH2–OH).

Непредельные спирты с ОН-группой при атоме углерода, соединенном с другим атомом двойной связью, очень неустойчивы и сразу же изомеризуются в альдегиды или кетоны. Например, виниловый спирт CH2=CH–OH превращается в уксусный альдегид CH3–CH=O

Фенолы

Фенолы – гидроксисоединения, в молекулах которых ОН-группы связаны непосредственно с бензольным ядром.

VRML-модель молекулы фенола

В зависимости от числа ОН-групп различают одноатомные фенолы (например, вышеприведенные фенол и крезолы) имногоатомные. Среди многоатомных фенолов наиболее распространены двухатомные:

Как видно из приведенных примеров, фенолам свойственна структурная изомерия (изомерия положения гидроксигруппы).

УГЛЕВОДЫ

Углеводы (сахара) – органические соединения, имеющие сходное строение и свойства, состав большинства которых отражает формула Cx(H2O)y, где x, y ≥ 3.

Общеизвестные представители: глюкоза (виноградный сахар) С6Н12О6, сахароза (тростниковый, свекловичный сахар)С12Н22О11, крахмал и целлюлоза [С6Н10О5]n.

Углеводы содержатся в клетках растительных и животных организмов и по массе составляют основную часть органического вещества на Земле. Эти соединения образуются растениями в процессе фотосинтеза из углекислого газа и воды при участии хлорофилла. Животные организмы не способны синтезировать углеводы и получают их с растительной пищей.
Фотосинтез можно рассматривать как процесс восстановления СО2 с использованием солнечной энергии. Эта энергия освобождается в животных организмах в результате метаболизма углеводов, который заключается, с химической точки зрения, в их окислении.

Углеводы объединяют разнообразные соединения – от низкомолекулярных, состоящих из нескольких атомов (x = 3), до полимеров [Cx(H2O)y]n с молекулярной массой в несколько миллионов (n > 10000).
По числу входящих в их молекулы структурных единиц (остатков простейших углеводов) и способности к гидролизу углеводы подразделяют на моносахариды, олигосахариды и полисахариды.
Моносахариды не гидролизуются с образованием более простых углеводов.
Олиго- и полисахариды расщепляются при гидролизе до моносахаридов. В молекулах олигосахаридов содержится от 2 до 10 моносахаридных остатков, в полисахаридах – от 10 до 3000-5000.

НЕКОТОРЫЕ ВАЖНЕЙШИЕ УГЛЕВОДЫ

Моносахариды Олигосахариды Полисахариды
Глюкоза С6Н12О6
Фруктоза С6Н12О6
Рибоза С5Н10О5
Дезоксирибоза С5Н10О4
Сахароза (дисахарид) С12Н22О11
Лактоза (дисахарид) С12Н22О11
Раффиноза (трисахарид) С18Н32О16
Целлюлоза (С6Н10О5)n
Крахмал (С6Н10О5)n
Гликоген (С6Н10О5)n

Для большинства углеводов приняты тривиальные названия с суффиксом -оза (глюкоза, рибоза, сахароза, целлюлоза и т.п.).

Моносахариды

В природе наиболее распространены моносахариды, в молекулах которых содержится пять углеродных атомов (пентозы) или шесть (гексозы). Моносахариды – гетерофункциональные соединения, в состав их молекул входит одна карбонильная группа (альдегидная или кетонная) и несколько гидроксильных. Например:

Из этих формул следует, что моносахариды – это полигидроксиальдегиды (альдозы, альдегидоспирты) или полигидроксикетоны (кетозы, кетоноспирты).
Рибоза и глюкоза — альдозы (альдопентоза и альдогексоза), фруктоза — кетоза (кетогексоза).

Однако не все свойства моносахаридов согласуются с таким строением. Так, моносахариды не участвуют в некоторых реакциях, типичных для карбонильной группы. Одна из гидроксигрупп отличается повышенной реакционной способностью и ее замещение (например, на группу -OR) приводит к исчезновению свойств альдегида (или кетона).

Следовательно, моносахаридам, кроме приведенных формул, свойственна также иная структура, возникающая в результате внутримолекулярной реакции между карбонильной группой с одним из спиртовых гидроксилов.
В разделе 3.2 приведена реакция присоединения спирта к альдегиду с образованием полуацеталя R-CH(OH)OR’. Такая реакция внутри одной молекулы сопровождается ее циклизацией, т.е. образованием циклического полуацеталя.
Известно, что наиболее устойчивыми являются 5-ти и 6-ти членные циклы (часть II, раздел 3.2). Поэтому, как правило, происходит взаимодействие карбонильной группы с гидроксилом при 4-м или 5-м углеродном атоме (нумерация начинается с карбонильного углерода или ближайшего к нему конца цепи).

Читайте также:  Видеть во сне подготовку к похоронам

Таким образом, в результате взаимодействия карбонильной группы с одной из гидроксильных моносахариды могут существовать в двух формах: открытой цепной (оксо-форме) и циклической (полуацетальной). В растворах моносахаридов эти формы находятся в равновесии друг с другом. Например, в водном растворе глюкозы существуют следующие структуры:

Подобное динамическое равновесие структурных изомеров называется таутомерией. Данный случай относится к цикло-цепной таутомерии моносахаридов.

Циклические α- и β-формы глюкозы представляют собой пространственные изомеры, отличающиеся положением полуацетального гидроксила относительно плоскости кольца.
В α-глюкозе этот гидроксил находится в транс-положении к гидроксиметильной группе -СН2ОН, в β-глюкозе – в цис-положении.

С учетом пространственного строения шестичленного цикла (см. анимацию) формулы этих изомеров имеют вид:

Аналогичные процессы происходят и в растворе рибозы:

В твердом состоянии моносахариды имеют циклическое строение.

Химические свойства моносахаридов обусловлены наличием в молекуле функциональных групп трех видов (карбонила, спиртовых гидроксилов и полуацетального гидроксила).

Например, глюкоза как многоатомный спирт образует простые и сложные эфиры, комплексное соединение с гидроксидом меди (II)/NaOH ; как альдегид она окисляется аммиачным раствором оксида серебра и гидроксидом меди (II), а также бромной водой, в глюконовую кислотуCOOH-(CHOH)4-COOH и восстанавливается водородом в шестиатомный спирт – сорбит CH2OH-(CHOH)4-CH2OH;в полуацетальной форме глюкоза способна к нуклеофильному замещению полуацетального гидроксила на группу -OR (образование гликозидов, олиго- и полисахаридов). Аналогично ведут себя в таких реакциях и другие моносахариды.
Важнейшим свойством моносахаридов является их ферментативное брожение, т.е. распад молекул на осколки под действием различных ферментов. Брожению подвергаются в основном гексозы в присутствии ферментов, выделяемых дрожжевыми грибками, бактериями или плесневыми грибками. В зависимости от природы действующего фермента различают реакции следующих видов:

В живом организме в процессе метаболизма глюкоза окисляется с выделением большого количества энергии:

C6H12O6 + 6O2 6CO2 + 6H2O + 2920 кДж

Дисахариды

Дисахариды – это углеводы, молекулы которых состоят из двух остатков моносахаридов, соединенных друг с другом за счёт взаимодействия гидроксильных групп (двух полуацетальных или одной полуацетальной и одной спиртовой).
Связи, соединяющие моносахаридные остатки, называются гликозидными.

Примером наиболее распространенных в природе дисахаридов является сахароза (свекловичный или тростниковый сахар). Молекула сахарозы состоит из остатков глюкозы и фруктозы, соединенных друг с другом за счет взаимодействия полуацетальных гидроксилов (1→2)-гликозидной связью:

Сахароза, находясь в растворе, не вступает в реакцию «серебряного зеркала», так как не способна превращаться в открытую форму, содержащую альдегидную группу. Подобные дисахариды не способны окисляться (т.е. быть восстановителями) и называются невосстанавливающими сахарами.

Существуют дисахариды, в молекулах которых имеется свободный полуацетальный гидроксил, в водных растворах таких сахаров существуют равновесие между открытой и циклической формами молекул. Эти дисахариды легко окисляются, т.е. являются восстанавливающими, например, мальтоза.

В мальтозе остатки глюкозы соединены (1→ 4)-гликозидной связью.

Для дисахаридов характерна реакция гидролиза (в кислой среде или под действием ферментов), в результате которой образуются моносахариды:

При гидролизе различные дисахариды расщепляются на составляющие их моносахариды за счёт разрыва связей между ними (гликозидных связей):

Таким образом, реакция гидролиза дисахаридов является обратной процессу их образования из моносахаридов.

АМИНОКИСЛОТЫ

Аминокислоты — органические бифункциональные соединения, в состав которых входят карбоксильные группы –СООН и аминогруппы -NH2.

Это замещенные карбоновые кислоты, в молекулах которых один или несколько атомов водорода углеводородного радикала заменены аминогруппами.

Простейший представитель — аминоуксусная кислота H2N-CH2-COOH (глицин)

Аминокислоты классифицируют по двум структурным признакам.

1.В зависимости от взаимного расположения амино- и карбоксильной групп аминокислоты подразделяют на α-, β-, γ-, δ-, ε- и т. д.

2. По характеру углеводородного радикала различают алифатические (жирные) и ароматические аминокислоты. Приведенные выше аминокислоты относятся к жирному ряду. Примером ароматической аминокислоты может служить

пара-аминобензойная кислота:

Читайте также:

Рекомендуемые страницы:

©2015-2020 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-04-20
Нарушение авторских прав и Нарушение персональных данных

Источник